Toán 11 Hình Học Không Gian Bài 1

Toán 11 Hình Học Không Gian Bài 1

18.444 lượt xem 3.233 lượt tải

18.444 lượt xem 3.233 lượt tải

Lý thuyết hình học không gian 11

A. Kiến thức cơ bản, hướng dẫn giải các dạng bài tập

- Chứng minh đường thẳng song song với mặt phẳng

- Chứng minh mặt phẳng song song với mặt phảng

- Chứng mình 2 đường thẳng song song

- Chứng minh đường thẳng vuông góc với mặt phẳng

- Chứng minh 2 đường thẳng vuông góc

- Chứng minh 2 mặt phẳng vuông góc

C. Các công thức nâng cao và mở rộng để giải các dạng bài tập

Để được các thầy cô hướng dẫn phương pháp học hình học nói riêng và Toán 11 nói chung, các em học sinh có thể đăng ký khóa học: Học tốt Toán 11

Một số tài liệu các bạn học sinh có thể tham khảo thêm:

Lý thuyết khối đa diện - khối tròn xoay

Tài liệu gồm 255 trang, phân dạng và hướng dẫn giải bài tập các chuyên đề: đại cương hình học không gian, quan hệ song song, quan hệ vuông góc trong không gian; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 2 (đường thẳng và mặt phẳng trong không gian, quan hệ song song) và Hình học 11 chương 3 (vector trong không gian, quan hệ vuông góc); tài liệu cũng phù hợp với các em học sinh lớp 12 bị “mất gốc” hoặc muốn ôn tập lại kiến thức về hình học không gian trong chương trình Toán 11.

1 ĐẠI CƯƠNG HÌNH HỌC KHÔNG GIAN. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 0.1. Tìm giao tuyến của hai mặt phẳng. Dạng 0.2. Tìm thiết diện của hình (H) khi cắt bởi mặt phẳng (P). Dạng 0.3. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 0.4. Tìm thiết diện của hình (H) khi cắt bởi mặt phẳng (P). Dạng 0.5. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui, chứng minh một điểm thuộc một đường thẳng cố định.

2 QUAN HỆ SONG SONG. 1 HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG. A Tóm tắt lý thuyết. 2 ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 2.1. Chứng minh đường thẳng song song với đường thẳng, đường thẳng song song với mặt phẳng. Dạng 2.2. Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và song song với một đường thẳng cho trước. Tính diện tích thiết diện. 3 HAI MẶT PHẲNG THẲNG SONG SONG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. 4 KHỐI LĂNG TRỤ. 5 BÀI TẬP TỔNG HỢP CHƯƠNG II.

3 QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN. 1 ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. 2 HAI MẶT PHẲNG VUÔNG GÓC. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 2.1. Chứng minh hai mặt phẳng vuông góc. 3 GÓC GIỮA HAI ĐƯỜNG THẲNG. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 3.1. Tính góc giữa hai đường thẳng. 4 GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. A Góc giữa hai đường thẳng. B Bài tập rèn luyện. Dạng 4.1. Tính góc giữa hai đường thẳng. C Góc giữa đường thẳng và mặt phẳng. Dạng 4.2. Xác định và tính góc giữa đường thẳng và mặt phẳng. D Bài tập rèn luyện. E Góc giữa hai mặt phẳng. Dạng 4.3. Tính góc giữa hai mặt phẳng. F Bài tập rèn luyện. 5 KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG. A Phương pháp giải toán. B Bài tập mẫu. Dạng 5.1. Tính khoảng cách nhờ tính chất của tứ diện vuông. 6 HAI ĐƯỜNG THẲNG CHÉO NHAU. A Tóm tắt lý thuyết. B Bài tập rèn luyện. Dạng 6.1. Tính khoảng cách giữa hai đường thẳng chéo nhau. Dạng 6.2. Xác định đường vuông góc chung.

: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên

B. Các công thức cơ bản hình học không gian

1. Các công thức tam giác trong hình học không gian

2. Các công thức tứ giác trong hình học không gian

3. Công thức các hình trong không gian